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Abstract

Motivation: Representing a domain of knowledge has been tradi-
tionally accomplished in biology through creating hierarchies of terms.
Recently, the advances in description logics and the creation of expres-
sive ontology languages such as OWL have stimulated the community to
use axioms that express logical relationships other than class-subclass,
for example disjointness. This is improving the coverage and validity of
the knowledge contained in ontologies. However, current semantic tools
still need to adapt to this more expressive information. In this paper,
we propose a method to integrate disjointness axioms, which are being
incorporated in real-world ontologies such as the Gene Ontology and the
Chemical Entities of Biological Interest ontology, into semantic similarity,
the measure that estimates the closeness in meaning between concepts.

Results: We present a modification of the measure of shared informa-
tion content, which extends the base measure to allow the incorporation
of disjointness information. To evaluate our approach, we applied it to
several randomly selected datasets extracted from the ChEBI ontology;
in 93.8% of these datasets, our measure performed better than the base
measure of shared information content, supporting the idea that semantic
similarity is indeed more accurate if it extends beyond the hierarchy of
terms of the ontology.
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Figure 1: A graphical snippet of a hypothetical Shape Ontology. Arrows repre-
sent class-subclass relationships and dashed lines represent disjointness axioms.
In this example, we use the term Trapezoid to mean a quadrilateral with two
parallel sides and two obtuse angles. Also, a proper shape ontology would clas-
sify Square as a subclass of Rectangle, Rhombus and Parallelogram. For the
sake of the argument being exposed, however, we assume that such information
is as yet unknown by the ontology creators.

1 Introduction

Semantic similarity has been developed for different taxonomies, with direct
application in the class-subclass hierarchy of many biomedical ontologies, such
as the Gene Ontology (GO) (Lord et al., 2003), the Chemical Entities of Bio-
logical Interest ontology (ChEBI) (Ferreira and Couto, 2010) and the Human
Phenotype Ontology (HPO) (Kéhler et al., 2009). Semantic similarity assigns a
quantitative measure of similarity between two entities in an ontology, which has
seen multiple applications in semantic web and bioinformatics contexts (Grego
and Couto, 2013).

The current state-of-the-art in knowledge representation in the biomedical
domain is evolving to make use of ontology languages such as the Web On-
tology Language (OWL) that allow for more logically expressive axioms than
the simple hierarchical subclass of and relational statements favoured in early
bio-ontology releases (McGuinness and van Harmelen, 2004). Following these
developments, there is a need to adjust the current similarity measures to con-
form to current practices in ontology development. For example, ontologies
such as ChEBI and GO now contain disjointness axioms which express for a
pair of classes the constraint that an instance of one of them cannot also be
an instance of the other. The constraint also restricts subclasses from being a
subclass of both of the disjoint classes. Should such shared instances or sub-
classes be detected by an ontology reasoner, the reasoner will flag the ontology
as inconsistent, which can be used by ontology developers as a validation step
to prevent errors in ontology development.

In this paper, we propose that disjointness axioms can also enhance the infor-
mation that is available for exploitation by similarity measures. Figure 1 illus-
trates this situation. In this snippet, it is stated that no instance of Rectangle
can simultaneously be an instance of Trapezoid. However, given the ‘open



world’ assumption that underlies ontologies!, there can be instances of Rectangle
that are also instances of Parallelogram (in fact, it is a consequence of the
relevant geometric definitions that all squares are both rectangles and parallelo-
grams). For this reason, the similarity between Rectangle and Parallelogram
should be higher than the similarity between Rectangle and Trapezoid. Using
o to represent the two-argument function that returns the similarity between
two concepts:

o(Rectangle,Parallelogram) > o(Rectangle, Trapezoid) (1)

Several current semantic similarity measures make use of the idea of Infor-
mation Content (IC) applied to the concepts? of the ontology (Resnik, 1995;
Sénchez and Batet, 2011). The IC is a number that reflects how specific the
concept is. For example, in the illustration in Figure 1, Shape is the least specific
concept, receiving a lower IC than the other concepts.

There have been many proposals for how to best measure the information
content of a concept, but for space considerations we will refrain from mention-
ing them here. Suffice to say that work on IC measures has been extensively
studied, with several recent results and reviews on the subject including, e.g,
Van Buggenhout and Ceusters (2005) and Seddiqui and Aono (2010).

Another notion commonly used in semantic similarity is the most informative
common ancestor (MICA) (Resnik, 1995), applied to a pair of concepts, which
is defined as the concept with highest IC from the set of all concepts that are
ancestor to both x and y:

MICA(z,y) = argznaX{IC(c) lce A(x) NA(y)} (2)

where A(x) is the set of ancestors of = (including z itself).

The first semantic similarity measure to make use of IC, by Resnik (1995),
estimates similarity as the IC of the MICA between x and y. The motivation
behind this choice for the formula is simple: = and y share a certain amount of
information and the MICA is one way to estimate this shared information.

Many semantic similarity measures are based on this notion of shared in-
formation content between two concepts (Jiang and Conrath, 1997; Lin, 1998;
Pesquita et al., 2008). For example:

IC(MICA(z, y)) (3)

_ 2x IC(MICA(z,y))
ouin(,y) = IC(z) + 1C(y) )

OResnik (Iv y)

Hnformally, the ‘open world’ assumption states that what is not known to hold does not
give any information about what is known not to hold. One consequence of this is that if an
ontology does not contain subclasses for a given class, it can nevertheless not be assumed that
no such subclasses exist.

2The terms ‘concept’ and ‘class’ are used interchangeably throughout this document. In
Description Logics communities the term ‘concept’ is more commonly used, while in the
context of the Semantic Web and the OWL language the term ‘class’ is favoured.



On the other hand, work has been published recently (Couto and Silva, 2011)
showing a new approach to the problem of finding the best way to measure
shared information content between two concepts. While shared information
content has been assumed to be best estimated as IC(MICA(z,y)) (Resnik,
1995), Couto and Silva (2011) suggest DiShIn, which behaves as a plug-in to
the measure of IC, that contributes to a better measure of shared information
content by exploring multiple parentage in order to ensure that all the shared
information across multiple ancestors is taken into account.

Just as was done for DiShln, instead of proposing a semantic similarity mea-
sure, we propose a plug-in that can be used by existing measures, such as the
ones in equations (3) and (4). Our plug-in refines the estimation of shared infor-
mation between two concepts by incorporating the disjointness axioms in the on-
tology into it. We call the new shared information content measure ICq;(, y),
which will be based on a prior measure of shared information content, denoted
by IC%(z,y). We stress that any measure of shared information content can be
used as a base to ICfﬁsj, not just the one proposed by Resnik, as is the case with
DiShIn.

Given the example presented in Figure 1 and the inequality of equation (1), it
would be desirable for the measure of shared information content to decrease for
concepts that are known to be disjoint, in order to formalize the intuition that
disjoint classes are less similar since they cannot possibly share any members.
Furthermore, in order to respect the open-world assumption that often accom-
panies ontologies, the measure of shared information should stay unchanged
when two concepts are not known to be disjoint.

With this novel measure of shared information content, we intend to show
that semantic similarity can take advantage of the disjointness axioms of an
ontology, thus providing evidence that future measures should consider them in
evaluating the closeness in meaning between two concepts.

2 ChEBI

For the evaluation of our proposal, we have computed shared information con-
tent for ChEBI, the ontology of Chemical Entities of Biological Interest (Degt-
yarenko et al., 2008). It is worth, as such, to introduce the reader to the state of
disjointness information that this ontology includes. In the OBO community (in
which ChEBI is embedded) there is a tacit agreement that it is good practice
to ensure that sibling terms are mutually disjoint. This is, however, not the
case for ChEBI: mid-level chemical classes, which constitute most of ChEBI,
are generally not pairwise disjoint, as chemical classification is compositional,
i.e. classes often reflect parts or properties of molecules that may co-occur in
many different combinations in fully specified molecules (Hastings et al., 2012b).
In an ontology of chemical compounds, a leaf class can, in theory, be re-
garded as disjoint with the other leaf classes. F.g. a-pD-glucose is disjoint with
histidine. However, ChEBI is not a complete ontology for chemistry, and some
of the leaves it contains do not follow this rule. For example, aminophospholipid,



Figure 2: An illustration of an ontology with disjoint axioms represented be-
tween concepts. Arrows between concepts represent class-subclass relationships
and dashed lines represent disjointness.

defined as “a phospholipid that contains one or more amino groups,” is a leaf
in ChEBI at present. However, this class represents the molecules that contain
specific substructures and, as such, it is not necessarily disjoint with the other
leaves. Given that ChEBI is a work in progress, where new knowledge is added
after careful manual duration, this has resulted in aminophospholipid being
presently a leaf. Other such cases can be found, rendering even the theoretical
rule that all leaves are disjoint not applicable.

Thus, in what follows we have not attempted to automatically enhance the
number of disjointness axioms available in ChEBI. Rather, we have used only
those axioms that have explicitly been added to the ontology.

3 Methods

3.1 Shared information using disjointness

To accommodate the requirements of the previous section, we propose the new
measure of shared information content:

G (, y) = IC° (2, y) — k(x,y) ()

where IC®(x, y) is any measure of shared information content between two con-

cepts « and y, k(x,y) > 0 if x and y are disjoint and k(z,y) = 0 otherwise.
This equation presents a discontinuity issue. In the hypothetical ontol-

ogy of Figure 2, this measure leads to IC};;(D,E) < IC(B). Depending on

the value k(D,E), this could imply IC};;(D,E) < IC(A) = ICj;;(D,F), which,
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Figure 3: This image illustrates the notion of the potential for implicit common
ancestors (ICA) between two concepts. In both cases, MICA(X,Y) = M, and
the most informative ancestor of M is Z. The difference is in the location of the
disjointness axiom. In situation A, there is a lower likelihood of ICA between X
and Y, because the axiom of disjointness is closer to their common ancestry.

however, should not be possible, since D and E share more information than D
and F. Therefore, k should have an upper bound that depends on the IC of the
most informative ancestor of the MICA, which, in this case, can be written as
k(D,E) < IC(B) — IC(a).

An operational notion that is required for the implementation of our measure
is the likelihood of two concepts sharing ancestors that are not asserted as such.
We call this the potential for implicit common ancestors (ICA). Take as an
example the ontology snippets of Figure 3. In situation B, given the open-world
assumption, there is a small chance that Y turns out to be a subclass of X/,
while in situation A that cannot happen, since Y is inferred to be disjoint with
X' (likewise for X and Y’). This suggests that there is a lower potential for ICA
between the concepts X and Y in situation A, as the disjointness is declared
between the direct subclasses of M. We model the wunlikelihood of ICA as a
function f(z,y), which returns higher values for situations with lower potential
for ICA:

f(z,y) = max {p(;b) ’ acAlz)AbeAly) A Ja, b)} u {0} (6)

where A(z) is the set of ancestors of z (including z), J(a,b) is true when a
and b are disjoint (either by assertion of inference), and false otherwise, and
p(a,b) is path length of the shortest path from a to b. The path length takes



into account only the situations A and B illustrated class-subclass relations, not
the disjointness arcs (the dashed edges of the figures). In the situations A and
B illustrated in Figure 3, the unlikelihood of ICA between X and Y would be
% and %, respectively. When the two concepts are not disjoint, the first set
in the union becomes empty (since J(a,b) will always be false), resulting in
f(z,y) =0.

The general procedure followed by our approach to calculate the shared
information content between x and y is, therefore:

1. Determine M = MICA (z,y)

2. Determine Z = argmax {IC(c)|c € A(M)}, i.e. the most informative
ancestor of M;

3. Estimate the unlikelihood of ICA, f(x,y), as described in (6);
4. Calculate k(z,y) = f(z,y) - IC(M) —IC(Z));

5. Calculate IC},(z,y) = 1C*(M) — k(=, y).

With this procedure, the new shared information content is estimated as an
weighted average between IC(M) and IC(Z), where a higher f (lower potential
for ICA) leads to a shared information content closer to IC(Z) and lower f
(higher potential for ICA) leads to a shared information content closer to IC(M).
This means that the shared information content decreases by a larger amount
when there is a smaller potential for implicit common ancestors. Note that if
the two concepts are not disjoint, k(z,y) = 0 and ICSdisj = ICS, which satisfies
the requirement above.

3.2 The assessment

We applied this new measure of shared information content to a small subset
of ChEBI, the ontology for chemical entities of biological interest (Degtyarenko
et al., 2008). Disjoint axioms were supplied by the ChEBI development team
(Hastings et al., 2012a, 2013) and the main ontology was directly extracted
from the official webpage (http://www.ebi.ac.uk/chebi/downloadsForward.
do) on October 181 2012 (which corresponded to version 96 of the ontology).
To avoid any possible bias to an external corpus, information content for a
concept ¢ was calculated with an intrinsic measure based on the total number of
direct and inferred subclasses of ¢, as detailed by Van Buggenhout and Ceusters
(2005):
1 D(c
_logN. og| JE/')| (™)

where D(c) is the set of subclasses of ¢ (including ¢) and N is the total number
of concepts in the ontology. For instance, leaves of the ontology (those concepts
without any descendants) have the maximum possible IC, 1.0. Tt is worth noting
again that this is but one of the many possible ways of measuring information
content, and that our measure can be adapted to any one of them. We also used,

IC(¢c) =



for this assessment, the classical notion of shared information content proposed
by Resnik (1995):
IC*(z, y) = IC(MICA(z, y)) (8)

The subset of chemical classes from ChEBI used in this assessment (see
Suppl. A) was randomly selected by first choosing a pair of asserted disjoint
classes in the ontology, A’ and B’, and then choosing two classes A and B,
respectively descendants of A’ and B’, both fulfilling two conditions:

e classes, not leaves: even though in the ChEBI structure-based chemical
classification the leaves are almost always fully specified chemical com-
pounds which are therefore pairwise disjoint, these axioms are not yet
explicit in the OWL files and, as such, we decided not to use the leaves in
the testing dataset.

e classes with sufficient structural information: we used the criterion
that a class would only be included in the dataset if either (i) it is an-
notated with a chemical structure (as a SMILES representation), or (ii)
enough of its descendants contain such a representation. The arbitrary
threshold was set at 80% of all the leaf descendants. This allowed us to
compare our semantic similarity measure with a purely structural mea-
sure, as explained below. Only classes in the chemical entity branch of
ChEBI can fulfill this condition.

These selection criteria were applied until 40 distinct classes were found.

To assess the usefulness of including disjointness axioms, we calculated the
Pearson’s correlation coefficient between the outcome of ICZisj and a purely
structural measure of similarity between every pair of compounds in the dataset
created previously. Semantic similarity, in general, is not intended to replace
structural measures of similarity but to complement them with a knowledge-
oriented perspective; for this reason, it may seem strange, at first, that we use
the correlation between structural similarity and IthSj as a way to validate our
measure. However, ChEBI, in particular its chemical entity branch, models
chemistry knowledge largely based on the structural properties of the molecules.
As such, it is to be expected that measures of semantic similarity between
concepts from this branch of the ontology reflect to some extent the structural
similarity between them. Therefore, in this particular case, it is valid to assume
that an ontology-based measure which better reflects the structural similarity
is better suited for estimating similarity than a measure that correlates worse
with structural similarity.

Structural similarity was computed based on PubChem’s fingerprint method
(Bolton et al., 2008).

The structural comparison of concepts x and y was done through the SMILES
representations associated with the leaf descendants of these concepts, using a
best match average approach, as follows:

1. For concept x, choose the descendant concepts that are leaves and that
contain SMILES information, {z1,...,x,}. If the concept itself has SMILES



information, assume n = 1 and x; = x. Do the same for concept y to
achieve the set {y1,...,Ym}-

2. Generate a PubChem fingerprint for each z; and y;.

3. Compare all the z; fingerprints with all the y; fingerprints, with the Tan-
imoto coefficient (Flower, 1998), generating the matrix of structural sim-
ilarities s(z;, y;)-

4. For each ¢ find f,(¢) = max;{s(z;,y;)}; and for each j find f,(j) =
max;{s(zi, y;)}-
S fe (D45, £,0)

5. Assign P to the structural similarity between = and y.

In summary, for the dataset created above, we compared all compounds with
all the other compounds (820 distinct pairs) using three measures: PubChem’s
fingerprints, the classical IC* and the ICy;;.

It is important to notice here that we do our analysis over the raw value of
ICfﬁSj, rather than any one measure of similarity based on this value (such as
in equation (4)). This was done to show that we can increase the actual utility
factor of the measure of shared information content rather than the utility of a

specific measure of similarity.

4 Results and discussion

We present three main results stemming from the comparison of structural and
semantic similarity measures. Our main assumption is, as stated above, that in
the chemical entity branch of ChEBI, a measure that better correlates with
structural similarity is more suitable to represent the reality than a measure
with lower correlation coefficient.

4.1 Increase in correlation coeflicient

Our first result is that exploring the axioms of disjointness leads to an increase
in the correlation between structural and semantic similarity.

The Pearson’s correlation coefficient between the structural measure and 1C®
is 0.69883, and after taking the disjointness axioms into account, the correlation
for structural similarity vs ICg;; becomes 0.71571. This represents an increase of
0.01688. Despite its small absolute increase, this value is statistically significant,
with a p-value of 4.5 x 1078 (Wolfe’s t-Test, Wolfe (1976)).

The small increase of the correlation can be attributed to at least three

factors:

e As the annotation of disjointness is still incomplete in ChEBI, we have
access to only a small subset of all the real disjointness axioms that could
be expressed between ChEBI’s concepts, which means that the shared
information content for the pairs of concepts changes only for a fraction of



all the pairs (39% from the sample selected). As more axioms of this kind
are included in ChEBI, we expect both this fraction and the difference
between correlation coefficients to increase.

e While the correlation coefficients are generally high, structural similarity
and semantic similarity measures are inherently different, and as such
there is a maximum bound on the actual correlation that can be expected
between the two. Also, different classes within ChEBI can be expected to
show a lower correlation while others show a higher correlation.

e Disjointness is only one of the logical axiom types that are used to express
class definitions in an OWL ontology. In fact, ChEBI contains a num-
ber of other properties that are also used to capture the meaning of its
classes, e.g. the property has tautomer, which connects together closely
structurally related chemicals, and has role, which connects a chemical
class to its biological activity.

4.2 Effect of the number of axioms

To clarify the first result above, we carried out an experiment that aims to
simulate the development of the ChEBI ontology with respect to the disjointness
axioms. For that, we partitioned the 199 axioms we had access to into 10 groups,
and observed the behavior of the correlation between structural and semantic
similarity as we added these axiom subsets. For each of the parts that were
created, we ran the IC§;; algorithm and plotted a graph showing the increase in
correlation that stemmed from the addition of more axioms. Given the random
method that was used to partition the axioms, we ran the experiment 20 times
to remove any bias that could have resulted from any one particular partition.

The graphs in Figure 4 show the result of some of these experiments.

These graphs illustrate that not all disjointness axioms are important for a
given dataset. In fact, only some of the parts significantly affect the correlation
coefficient, which suggests that those parts contained the axioms that change
the logical meaning behind the concepts in the dataset. However, there is a
very obvious trend (see Figure 5 for an average of the graphs of all the 20 ex-
periments) that indicates an increase of the correlation, which, again, indicates
that the disjointness axioms improve the correctness of the measure of semantic
similarity.

4.3 Effect on other datasets

Since the dataset created for the purpose of the results presented before resulted
from a random selection process, we also studied the effect of considering the ax-
ioms of disjointness in other datasets. Following the selection process presented
previously, we created 550 more datasets (all with 40 or 41 compounds) and
compared the correlation coefficient as previously explained. The graph of Fig-
ure 6 is an histogram that represents the difference in the Pearson’s correlation
coefficient for all these datasets.

10
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Figure 4: These graphs illustrate the effect of the number of disjointness ax-
ioms on the correlation coefficient between structural and semantic similarity.
Each graph represents a random partition of the axioms; the abscissa is the
number of axioms used by the semantic similarity measure and the ordinate
is the correlation coefficient. The correlation coefficient for 0 axioms is always
equal to the correlation measured with the classical IC®*, which is 0.69883; the
correlation coefficient for the maximum number of axioms corresponds to the
value 0.71571 presented in section 4.1. These graphs are representative of the
behavior obtained in all of the 20 experiments.
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Figure 5: This graph shows the average of all the graphs produced in the experi-
ments Section 4.2. Although these values do not have any statistical significance
in themselves, they clearly show the trend that the more disjointness axioms are
considered, the better is the correlation between structural and semantic simi-
larity.
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Figure 6: The distribution of the difference in correlation coeflicient for 550
random datasets. The vast majority of the cases show an increase in correlation
coefficient. For each dataset, we also used Wolfe’s t-Test to calculate the p-value
associated with the hypothesis that the increase was due to random chance, and
marked with a darker shade the amount of datasets for which p-value < 0.05.
The vertical line midplot shows the zero of the axis, i.e. where the two correlation
coefficients are the same.

As is visible in that graph and in Table 1, the vast majority of the datasets
are associated with an increase in the correlation coefficient. In fact, the effect
of considering the disjointness axioms for the semantic similarity only impacts
negatively 6.2% of the datasets. We observed a mean correlation increase of
0.0149, with a standard deviation for that value of 0.0130. Furthermore, in
72.5% of the datasets, the increase in correlation is significant at a confidence
value of 0.05 (Wolfe’s t-Test).

Although the work presented here shows with statistical strength the utility
of IC?iisj when measuring shared information content between two concepts, it
can still be improved. We presented the discontinuity problem, and how to
avoid it by restricting k so that shared information content never reduces below
IC(Z) (where Z is the most informative ancestor of the MICA). This can lead
to some other problems. For example, future changes to the ontology can lead
to unexpected changes in ICj;;. Consider the ontology change of Figure 7.
Assuming 1000 concepts in the ontology, IC(B) ~ 0.77 and IC(A) = 0. After

the step illustrated in the figure, IC(X) ~ 0.72. This means that the ICj;;(E, F)

Table 1: Statistics related to the histogram of Figure 6. The last column shows
the frequency relative to all the 550 datasets created.

# datasets % datasets

Increase in correlation 516 93.8%
p-value < 0.05 399 72.5%

12



Figure 7: A hypothetical developing step in one ontology. From one iteration to
the next, the ontology gained a new term between A and B. Prior to this change,
the similarity between E and F depends on the difference IC(B) — IC(4); after
the change it depends on IC(B) — IC(X).

increases unexpectedly from 0.38 to 0.74 because of a very small change in the
ontology. These kinds of top-level additions, however, are not very common,
and as such the magnitude of this particular jump in similarity is not expected
to happen very often.

A second point of future development in our measure concerns equation (6),
used to model the potential for implicit common ancestors (ICA). Our approach
depends on the edge distance between two concepts: however, it may be possible
to explore the semantics of the edges themselves in order to refine this measure.

Another important point to notice in this work is that the measure of in-
formation content influences the results obtained with IC3;;. In this case, IC
was calculated with the information contained in the ontology alone, which can
result in some artificial values: for example, the concept ynol is generic and
should have a small IC, but due to the nature of ontology development, this
area of ChEBI is still undeveloped, and ynol does not have any subclasses yet;
consequently, IC(ynol) = 1. It would be informative to see the effect of changing

the information content measure used with ICj;; to a more realistic one.

5 Conclusion

The main purpose of this work was to test whether exploiting the disjointness
axioms of an ontology increases the performance of shared information content

13



measures. We developed a plug-in that can be used with any measure of shared
information content, called IC§;y;, which satisfies the designated requirements
set forth in the beginning of the work, particularly that its value should decrease
for pairs of disjoint concepts.

The assessment of our measure, which is based on the Pearson’s correlation
coeflicient between structural similarity and semantic similarity, has shown that
there is, in fact, an improvement of the measure of shared information con-
tent, since its correlation with structural similarity in an ontology that encodes
structural knowledge increases as the number of disjointness axioms increase.

This new approach is able to successfully explore more than just the sub-
sumption hierarchy of an ontology, relying additionally on a partial subset of
the description logic axioms that are included in the ontology to further refine
the comparison of two concepts.

To the best of our knowledge, this represents the first attempt to use de-
scription logic expressivity in semantic similarity in the biomedical domain. We
demonstrated our hypothesis that disjointness axioms contain informative data
that can be correctly explored by semantic similarity measures, even with a
naive approach. More sophisticated approaches may include the exploration of
the semantics of edges, other types of information content based on external
corpus, etc.

In conclusion, this work strongly suggests that future measures of semantic
similarity should consider the full logical formalism of the ontologies that they
use in order to establish a measure of similarity that more accurately reflects
the reality of the domain of knowledge therein modeled.

Acknowledgements

Funding: This work was supported by the Fundacao para a Ciéncia e Tec-
nologia [PhD grant SFRH/BD/69345/2010 to J.F., Lasige Multiannual Funding
Programme, SOMER project PTDC/EIA-EIA /119119/2010] and by the Euro-
pean Commission [EU-OPENSCREEN project to J.H.].

References

Bolton, E. E., Wang, Y., Thiessen, P. A., and Bryant, S. H. (2008). PubChem: integrated platform
of small molecules and biological activities. In R. A. Wheeler and D. C. Spellmeyer, editors,
Annual Reports in. Computational Chemistry, Volume 4, volume 4, chapter 12, pages 217—241.
American Chemical Society, Washington, DC, 2008 Apr, Washington, DC.

Couto, F. M. and Silva, M. J. (2011). Disjunctive shared information between ontology concepts:
application to Gene Ontology. Journal of biomedical semantics, 2(1), 5.

Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., Alcantara, R.,
Darsow, M., Guedj, M., and Ashburner, M. (2008). ChEBI: a database and ontology for chemical
entities of biological interest. Nucleic acids research, 36(Database issue), D344.

Ferreira, J. D. and Couto, F. M. (2010). Semantic Similarity for Automatic Classification of Chem-
ical Compounds. PLoS Computational Biology, 6(9), e1000937.

14



Flower, D. (1998). On the Properties of Bit String-Based Measures of Chemical Similarity. Journal
of Chemical Information and Computer Sciences, 38(3), 379-386.

Grego, T. and Couto, F. M. (2013). Enhancement of chemical entity identification in text using
semantic similarity validation. PloS one, 8(5), ¢62984.

Hastings, J., de Matos, P., Dekker, A., Ennis, M., Muthukrishnan, V., Turner, S., Owen, G., and
Steinbeck, C. (2012a). Modular Extensions to the ChEBI Ontology. In Internation Conference
on Biomedical Ontologies.

Hastings, J., Magka, D., Batchelor, C., Duan, L., Stevens, R., Ennis, M., and Steinbeck, C. (2012b).
Structure-based classification and ontology in chemistry. Journal of cheminformatics, 4(1), 8.

Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V., Owen,
G., Turner, S., Williams, M., and Steinbeck, C. (2013). The ChEBI reference database and
ontology for biologically relevant chemistry: enhancements for 2013. Nucleic acids research,
41(Database issue), D456-63.

Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexi-
cal taxonomy. In International Conference Research on Computational Linguistics, number
Rocling X.

Kohler, S., Schulz, M. H., Krawitz, P., Bauer, S., Dolken, S., Ott, C. E., Mundlos, C., Horn, D.,
Mundlos, S., and Robinson, P. N. (2009). Clinical diagnostics in human genetics with semantic
similarity searches in ontologies. American journal of human genetics, 85(4), 457—64.

Lin, D. (1998). An information-theoretic definition of similarity. In 15th International Conference
on Machine Learning, volume 1, pages 296—304.

Lord, P. W., Stevens, R. D., Brass, A., and Goble, C. (2003). Semantic similarity measures as tools
for exploring the gene ontology. In Proceedings of the Pacific Symposium on Biocomputing,
volume 8, pages 601-612.

McGuinness, D. L. and van Harmelen, F. (2004). OWL web ontology language overview. W3C
recommendation, 10(2004-03), 10.

Pesquita, C., Faria, D., Bastos, H., Ferreira, A. E. N., Falcao, A. O., and Couto, F. M. (2008).
Metrics for GO based protein semantic similarity: a systematic evaluation. BMC Bioinformatics,
9 Suppl 5, S4.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In
IJCAI-95, volume 1.

Sénchez, D. and Batet, M. (2011). Semantic similarity estimation in the biomedical domain: an
ontology-based information-theoretic perspective. Journal of biomedical informatics, 44(5),
749-59.

Seddiqui, H. and Aono, M. (2010). Metric of intrinsic information content for measuring seman-
tic similarity in an ontology. Proceedings of the Seventh Asia-Pacific Conference Modelling,
(Apcem), 89-96.

Van Buggenhout, C. and Ceusters, W. (2005). A novel view on information content of concepts
in a large ontology and a view on the structure and the quality of the ontology. International

journal of medical informatics, 74(2-4), 125-32.

Wolfe, D. A. (1976). On testing equality of related correlation coefficients. Biometrika, 63(1),
214-215.

15





